Studien zum Ramaneffekt

XXIV. Das Ramanspektrum organischer Substanzen (Moleküle mit kumulierter Doppelbindung)

Von

H. KOPPER und A. PONGRATZ

Aus dem Physikalischen Institut der Technischen Hochschule in Graz

(Mit 1 Textfigur)

(Vorgelegt in der Sitzung am 20. Oktober 1932)

1. Einleitung.

Über das Schwingungsspektrum von Molekülen mit kumulierter Doppelbindung liegen bisher nur wenig Beobachtungen vor; Dadieu berichtete gelegentlich über die O=C=N-Gruppe und schloß aus den Ramanspektren von Phenyl- und α -Naphthyl-Isozyanat, daß zwei bei $\Delta \nu=1440$ und $1510~cm^{-1}$ gelegene kräftige Linien für diese Gruppe charakteristisch wären. Bourguel-Piaux beobachteten an Allen, Propylallen, Butylallen, 1, 1-Dimethylallen und kamen bezüglich des Ramaneffektes der kumulierten Doppelbindung C=C=C zu dem Schluß: "Der Ramaneffekt ist also in klarem Widerspruch mit unseren Formelbildern; die Allenbindungen sind nicht vom Typus der Äthylenbindung und noch weniger von dem des Azetylens. Die übliche Art der Formulierung des Allentypus ist daher zu verwerfen."

Es erschien uns im Hinblick auf diese Sachlage nützlich, die Erfahrungsgrundlagen betreffend die kumulierte Doppelbindung etwas zu vergrößern und die Berechtigung zu so weittragenden Schlußfolgerungen, wie die eben zitierte, zu überprüfen. Wir haben daher das Ramanspektrum von Allen wiederholt und die Spektren von Äthyl- und 1, 3-Dimethylallen sowie von Methyl-, Äthyl- und Isopropyl-Isozyanat neu aufgenommen 3. Ferner wer-

¹ A. Dadieu, Monatsh. Chem. 57, 1931, S. 437, bzw. Sitzb. Ak. Wiss. Wien (Па) 139, 1930, S. 629.

² M. BOURGUEL, L. PIAUX, Compt. rend. 193, 1931, S. 1333; vgl. dazu auch J. CABANNES, A. ROUSSEL, Compt. rend. 194, 1932, S. 706.

³ Die Ergebnisse an den beiden letzteren Substanzen wurden bereits im Buche, "Der Smekal-Raman-Effekt" (abgekürzt S. R. E.) von Kohlrausch, Berlin 1931, angeführt.

den die Ramanspektren von drei, bei der Darstellung obiger Substanzen benötigter Zwischenkörper angegeben, nämlich von 2,3-Dibrompropylen, von Tribromhydrin und von Vinyläthylkarbinol. Die Beschreibung der Darstellung der untersuchten Körper und die in Tabellenform wiedergegebene Ausmessung der Streuspektren ist in den Anhang verlegt. Die hier zur Diskussion stehenden Schwingungsspektren der Moleküle mit kumulierter Doppelbindung sind in der folgenden Figur graphisch zusammengestellt. Die Spektren Nr. 3 und 4 sind der vorläufigen Mitteilung von Bourguel-Piaux ², Nr. 9 und 10 der Arbeit Dadieus ¹ entnommen.

2. Die
$$C = C = C - Bindung$$
.

Das von uns abgeleitete Ramanspektrum Nr. 1 des Allens ist innerhalb der Versuchsfehler identisch mit dem von Bourguel-Piaux angegebenen. Aus dem Fehlen der in allen Äthylenderivaten vorkommenden und für die C=C-Bindung charakteristischen Linie $\Delta v \simeq 1620~cm^{-1}$ kommen die letzteren Autoren zu der in § 1 zitierten Schlußfolgerung. Jedoch läßt sich gerade bei diesem einfach und symmetrisch gebauten Körper zeigen, daß man gar kein anderes Spektrum erwarten kann, als eben das beobachtete, und daß daher das Experiment in ausgezeichneter Übereinstimmung mit dem üblichen Formelbild $H_2C=C=CH_2$ steht.

Man fasse die endständigen CH_2 -Gruppen zunächst als einheitliche Massen vom Gewicht m=14 auf; dann hat man es mit einem gestreckten symmetrischen dreiatomigen Molekül zu tun, das in seinem Bau dem Kohlendioxydmolekül O=C=O vollkommen analog ist. Von einem solchen Molekül verlangt die Theorie (S. R. E. § 51), daß es zu drei Schwingungsbewegungen mit den Frequenzen ω_1 , ω_2 , ω_3 fähig sein soll, von denen nach den Placzekschen Intensitätsüberlegungen ω_1 und ω_3 Ramaninaktiv (im Ramaneffekt "verboten"), ω_2 dagegen optisch-inaktiv (im ultraroten Absorptionsspektrum "verboten") sein müssen. Die Frequenzen sind zu berechnen nach:

$$n_1^2 = \frac{f}{m} p$$
 $n_2^2 = \frac{f}{m}$ $n_3^2 = \frac{d}{m} p$

⁴ G. Placzek, Z. physikal. Chem. 1931, S. 84; Leipziger Vorträge 1931, S. 59.

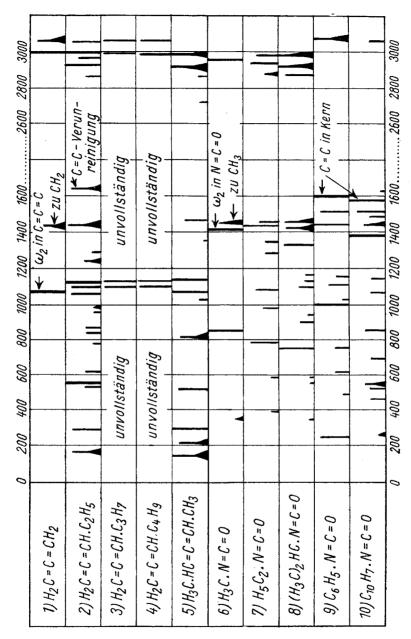


Fig. 1.

mit $n^2 = 5.863 \cdot 10^{-2} \cdot \omega^2$ (ω in cm^{-1}); m = 14; $p = \frac{M+2m}{M} = \frac{12+28}{12}$; f bedeutet die Federkraft der Doppelbindung C = C, d ihre Deformationskonstante, beide gemessen in Dyn/cm.

Setzt man für f den für die Äthylenbindung gefundenen mittleren Wert (S. R. E. S. 154) $f=9\cdot36\cdot10^{5}$ ein, so ergibt sich für ω_{2} der Wert 1067 cm^{-1} : die im Ramanspektrum verbotenen Frequenzen ω_{1} und ω_{3} sollten im ultraroten Absorptionsspektrum als Banden bei $\omega_{1}=\omega_{2}\sqrt[3]{p}=1960$ und $\omega_{3}\sim560$ cm^{-1} auftreten 5 ; doch sind uns Absorptionsmessungen an Allen nicht bekannt. Als "äußeres" Spektrum ist also eine einzige kräftige Ramanlinie bei ungefähr 1067 cm^{-1} zu erwarten; ferner sollten die beiden CH₂-Gruppen, die bisher als einheitliche Massen aufgefaßt wurden, ein "inneres" Spektrum geben, das in Analogie mit den CH₂-Gruppen in Äthylenderivaten aus drei Linien bestehen sollte, u. zw. (S. R. E. S. 190 und 235) bei 3080, 3010 und zirka 1400 cm^{-1} . Somit erhält man:

erwartetes Ramanspektrum: ca. 1067, 1400, 3010, 3080 cm^{-1} beobachtetes " 1074, 1435, 2995, 3060 cm^{-1} .

Die Übereinstimmung kann nicht besser sein und man hat im Gegensatz zu Bourguel-Piaux zu folgern: Das Ramanspektrum von $H_2C=C=CH_2$ entspricht genau der aus dem üblichen Strukturbild (symmetrisches, lineares Molekül mit C=C-Doppelbindungen) folgenden Erwartung.

Bezüglich der Allenderivate sind die Aussagen viel unsicherer. Bourguel-Piaux glauben, daß in den Molekülen Nr. 3 und 4 der Fig. 1 infolge unsymmetrischer Belastung eine Aufspaltung der Frequenz ω_2 eintritt; inwieweit dieser Schluß experimentell gestützt ist, könnte man vielleicht beurteilen, wenn das vollständige Ramanspektrum publiziert wäre; in der vorläufigen Mitteilung werden jedoch nur die in Fig. 1 eingetragenen Linien mitgeteilt 6 . Auch unsere Messungen (Spektren Nr. 2 und 5), von denen sich aber Nr. 2 auf ein nicht ganz einheitliches Präparat 7 bezieht, machen eine solche Aufspaltung wahrscheinlich, allerdings auch bei dem symmetrisch belasteten 1, 3-Dimethylallen. Nähere Aussagen wird man wohl zurückstellen müssen,

 $^{^5}$ Der Wert für $\omega_{\scriptscriptstyle 3}$ wurde, da über die Größe dnichts bekannt ist, abgeschätzt aus der Analogie mit CO $_{\rm e}.$

⁶ Anmerkung bei der Korrektur: Mittlerweile ist die ausführliche Mitteilung von Bourguel-Piaux in Bull. soc. chim. 51, 1932, S. 1041, erschienen, in der ebenfalls die Übereinstimmung zwischen Erwartung und Beobachtung beim Allen festgestellt und bezüglich der übrigen Derivate das ausführliche Zahlenmaterial mitgeteilt wird.

 $^{^{7}}$ Nach der bei $\Delta \nu = 1640$ auftretenden Linie zu schließen, sind Spuren eines Äthylenderivates vorhanden.

bis Beobachtungen an einer größeren Anzahl von Allenderivaten vorliegen.

3. Die
$$N = C = 0$$
-Bindung.

Dadieu (l. c.) hat in den Spektren Nr. 9 und 10 die Linien $\Delta \nu = 1440$ und $1510~cm^{-1}$ der Isozyanatgruppe zugeordnet. Spätere Messungen 8 an Benzolderivaten mit ungesättigten Seitenketten zeigten jedoch, daß alle Moleküle von der Form C_eH_5 . $HC=C < oder~C_eH_5$. $HC\equiv C$ — eine Frequenz bei 1500 aufweisen. In Übereinstimmung mit dem Befund an den Molekülen Nr. 6, 7, 8 wird man daher nur die Linie um 1420 als für die Gruppe — N=C=O charakteristisch ansehen können. Dieses Ergebnis führt zu Schwierigkeiten, wie im folgenden kurz auseinandergesetzt werden soll.

Die N=C=0-Gruppe ist als unsymmetrische, lineare, dreiatomige Gruppe zu denken, deren Frequenzen — mindestens wenn sie als freies Radikal oder z. B. in der Form HN=C=0 existieren würde — nach einer von Lechner 9 ausgearbeiteten Theorie zu berechnen wären. Da über die Federkraft in N=C nichts Sicheres bekannt ist, ist eine ungefähre Vorausberechnung der Frequenzen $\omega_1, \omega_2, \omega_3$, hier nicht möglich. Wohl aber lassen sich die folgenden Aussagen machen:

Erstens sind nun, sobald das Molekül unsymmetrisch ist, alle drei Frequenzen im Ramaneffekt erlaubt, wenn auch ω_1 und ω_3 wegen der nur geringen Unsymmetrie sehr schwach relativ gegen ω_2 zu erwarten sind; man wird also ω_2 mit $\Delta \nu = 1420$ identifizieren. Zweitens müssen ω_1 und ω_2 die Ungleichung

$$\frac{\omega_2}{\omega_1} + \frac{\omega_1}{\omega_2} > 2k$$

erfüllen, wobei k eine Funktion der schwingenden Massen ist und hier den Wert 1·2 hat; andernfalls sind die Werte ω_1 und ω_2 mit der Theorie überhaupt nicht vereinbar. Aus dieser Ungleichung folgt, daß $\omega_1 \geq \omega_2$. 1·87 sein muß. Der kleinste mögliche Wert für ω_1 ist daher, wenn $\omega_2 = 1420$ ist, gleich $2660 \ cm^{-1}$. Wenn nun auch die Nichtbeobachtung von Linien in diesem Frequenzgebiet durch zu geringe "Raman-Aktivität" der Schwingungsform erklärt werden kann, so ist doch das Wertepaar $\omega_2 = 1420$ und $\omega_1 \geq 2660$ unvereinbar mit der Strukturformel; denn es wür-

⁸ A. Dadieu, K. W. F. Kohlrausch, A. Pongratz, XVI. Mitt., Monatsh.
Chem. 60, 1932, S. 221, bzw. Sitzb. Ak. Wiss. Wien (II a) 140, 1931, S. 353.
9 F. Lechner, Sitzb. Ak. Wiss. Wien (II a) 141, 1932, S. 291.

den daraus Federkräfte zwischen N=C und C=O folgen, die sonst nur bei Dreifachbindungen vorkommen und der Strukturformel $N\equiv C\equiv O$ entsprechen würden. (f in $N\ldots C$ gleich 17.10^5 , in $C\ldots O$ gleich 18.10^5 ; also fast genau jene Werte, die in der Zyangruppe und im Kohlenoxyd auftreten.)

Daß die Frequenz 1420 für die Isozyanatgruppe charakteristisch ist, halten wir für gesichert. Einen Ausweg aus den Schwierigkeiten, in die die Deutung dieser Gruppenfrequenz im Zusammenhang mit dem Bau der Gruppe führt, haben wir bisher noch nicht gefunden.

Anhang.

a) Tribromhydrin, BrH₂C.CHBr.CH₂Br. Herkunft Dr. Fraenkel-Dr. Landau. Kp₋₁₄ \equiv 99·2—99·3° (Literaturangabe: Kp₋₁₂ \equiv 97°; Pariselle Ann. chim. [8], 24, S. 387). Ramanaufnahme: mit und ohne Filter, bei 0·07 mm Spalt und 13 bzw. 10 Stunden Exp.-Zeit. Untergrund schwach, Streuspektrum stark.

Tabelle a.
Tribromhydrin BrH₂C CHBr.CH₂Br. Platte 692, 693.

		,						
ν′	I	Zuordnung	ν′	I	Zuordnung	ν′	I	Zuordnung
			1	1		1	1	
24432	2 b.	q—2956	23227	0	k-1478	21759	10	k-2946
24397	2	k-308 [p]	23128	5*	e+190	21714	7*	e—1224
24373	0	k—332 $[q]$	22752	12*	e-186	21701	2*	e—1237
24246	2	k-454	22630	4*	e-308	21696	6	k-3009
24146	3	Hg; k —559	22607	1*	e-331	21613	1*	e—1325
24083	5	k-622	22585	2*	e-353	21571	2	i-2945
24061	3	k—644 $[i]$	22480	4*	e-458	21520	3*	e—1418
24033	5	k672	22436	0*	<i>f</i> —559	19979	4 b.*	e-2959
23896	1/2	i-620	22407	0*	?	19921	1/2*	e—3017
23857	3	k-848	22379	7*	e-559[f]	18493	8*	c + 185
23750	2	k955	22356	1/2*	<i>f</i> —639	18115	12*	c—193
23710	0	k995	22321	12*	e-617	17993	4*	c315 [b]
23620	0 b.	k-1085	22299	5*	e-639	17947	3*	c=361
23557	1/2 b.	k—1148 [i]	22268	12*	e—670	17880	0*	a+615[b]
23472	5	k-1233	22090	5*	e848	17846	5*	c—462
23455	2	k—1250	21987	4*	e—951	17742	5*	c—566
23401	0	e + 463	21944	1*	e—994	17681	12*	c-617, c -639
23377	1	k—1328	21862	2 b.*	e—1076	17515	3*	b + 187
23283	3 b.	k-1422	21826	0*	?	17454	4*	c—854 [a]
23247	1*	e + 309	21785	1/2*	e—1153	17138	2*	b—190

Δν' 186 (12), 310 (4), 357 (3), 461 (5), 560 (7), 618 (2), 641 (5), 671 (12), 850 (5), 953 (4), 994 (0), 1080 (2 b.), 1150 (2), 1230 (7), 1243 (2), 1326 (1), 1420 (3), (1478) (0), 2952 (10), 3012 (6).

b) 2,3-Dibrompropen, $\rm H_2C \equiv CBr$. $\rm CH_2Br$. Darstellung nach Gustavsohn (J. prakt. Chem. 38, 1888, S. 201) und Lebedew (κ 45, 1357; Chem. Centr. (I), 1914, S. 1410) durch Zutropfen von Tribromhydrin zu festem Kaliumhydroxyd bei 100—110° und 80—100 mm Druck. Kp.₁₁ \equiv 36—37°; Kp.₇₆₀ (teilweise Zersetzung) 141—141·5° (Literaturangabe: Kp.₇₆₀ \equiv 139 bis 140°). Ramanaufnahme: nur mit Filter mit 10½ Stunden Exp.-Zeit. Untergrund schwach, Streuspektrum stark.

Tabelle b. 2, 3-Dibrompropylen H,C = CBr—CH,Br. Platte 697.

y'	I	Zuordnung	γ′	I.	Zuordnung	ν′	I	Zuordnung
23137 23085 22798 22746 22621 22595	2* 4 b.* 8 b.* 4* 5*	e+199 $e+147$ $e-140$ $e-192$ $e-317$ $e-343$	22235 22006 21791 21755 21731 21704	4* 3* 0* 1/ ₂ * 7* 1/ ₂ *	e-703 $e-932$ $f-1204$ $e-1183$ $e-1207$ $e-1234$	19979 19921 18153 18109 17985 17954	1* 1* 4* 3* 2*	$\begin{array}{c} e-2959 \\ e-3017 \\ c-155 \\ c-199 \\ c-323 \\ c-354 \end{array}$
22556 22499 22395 22323 22271	1* 10* 4* 7* 5*	f-439 $e-439$ $e-543$ $e-615$ $e-667$	21562 21523 21381 21323 20080	6* 1* 1/ ₂ * 10* 0*	e-1376 $e-1415$ $f-1614$ $e-1615$ $e-2858$	17910 17859 17810 17761 17688	1/ ₂ * 6* 0* 5* 6*	$\begin{array}{c}?\\c-449\\a+545\\c-547\\c-620\end{array}$

 $\Delta \nu'$ 147 (8 b.), 197 (4), 320 (4), 348 (5), 442 (10), 545 (4), 617 (7), 667 (5), 703 (4), 932 (3), 1183 ($\frac{1}{2}$), 1206 (7), 1234 ($\frac{1}{2}$), 1376 (6), 1415 (1), 1615 (10), 2858 (0), 2959 (1), 3017 (1).

c) Allen, $H_2C \equiv C \equiv CH_2$. Darstellung nach Lebedew (** 45, 1357; Chem. Centr. (I), 1914, S. 1410) durch Eintropfen von 60 g 2, 3-Dibrompropen in eine Mischung von 50 g Zinkstaub und 50 cm^3 Äther unter ständigem Rühren. Das entweichende Gas wurde durch Eis-Kochsalz-Mischung von

Tabelle c. Allen $H_2C = C = CH_2$. Platte 709, 710.

ν′	I	Zuordnung	ν'	I	Zuordnung	у′	I	Zuordnung
24391 24355 24335 24294 23631	7 4 5 3 8	р—2998 Нg; q-3058	23442 23267 21921 21866 21715	2 3 b. 2* 15* 15	i—1074 k—1438 f—1074 e—1072 k—2993	21644 21527 21506 19939	4 b. 4 3 b.* 5*	k—3061 i—2989 e—1432 e—2999

 $\Delta \nu'$ | 1074 (15), 1435 (3 b.), 2995 (15), 3060 (4 b.).

mitgerissenen Ätherdämpfen befreit und der weitergehende Gasstrom durch eine mit Azeton-Kohlensäure gekühlte U-Röhre geleitet. Das Kondensat wurde einmal aus Eis-Kochsalz-Gemisch und zweimal aus auf — 27° abgekühltem Azeton destilliert, wobei die Substanz fast restlos bei Kp.760 = 35° siedete (Literaturangabe: Kp.760 = 32°). Sämtliche Teile der Fraktionierungsanlage waren verschmolzen und mit Chlorkalziumverschluß versehen. Ramanaufnahmen der im (in CO₂-Atmosphäre) zugeschmolzenen Ramanrohr unter Druck verflüssigten Substanz: mit und ohne Filter und mit 12 bzw. 8 Stunden Exp.-Zeit. Untergrund schwach, Streuspektrum stark.

d) Vinyläthylkarbinol $\rm H_{2}C=CH.CH < \frac{C_{2}H_{5}}{OH}$ Herstellung nach Grignard aus Akrolëin und Äthylmagnesiumbromid. Kp. $_{15}=31\cdot8-32^{\circ}$. (Lit.: Kp. $_{20}=37^{\circ}$, Kp. $_{760}=114-116^{\circ}$). Ramanaufnahme mit und ohne Filter (in letzterem Fall starker Untergrund) bei 14 bzw. 7 St. Exp. Zeit.

Tabelle d. Vinyläthylkarbinol $H_2C=CH.C\stackrel{OH}{\underset{C_2H_5}{\leftarrow}}$. Platte 569, 570.

ν'	I	Zuordnung	y' .	I	Zuordnung	ν'	I	Zuordnung
24481	1	p—2872	22105	1*	e—833	21496	5 b.*	e—1442
24455	2	q—2933 .	22075	4*	e—863	21353	0*	<i>f</i> —1642
24418	2 b.	q-2970 [p , o]	22013	3 b.*	e-925	21303	8*	$e{-}1635$
24379	2 b.	q—3009 [p]	21901	2*	$e{-1037}$	20064	4*	e-2874 [Hg]
23424	4 b.	k—1281	21870	3*	e—1068	20005	5 b.*	e—2933
23250	2 b.	k—1455	21829	1*	e—1109	19955	1*	e—2983
23061	2	k—1644	21825	2 b.	k-2880	19926	3*	e - 3012
22625	1/2 b.*	f—370 (?)	21781	4	k—2924	19852	2*	e—3086
22559	1*	e—379	21719	0*	f—1276	18086	1*	?
22491	1/2 b.*	e-447 (?)	21707	3	k2998	17860	2*	$c\!-\!448$
22409	3*	e—529	21695	0*	?	17776	4*	c—532
22349	1*	e—589	21662	7*	e—1276	17700	1*	c-608
22277	1*	e661	21631	2	k—3074 [i]	17532	2*	c—776
22164	3*	e—774	21510	1 b.	i-3006	17439	3 b.*	c—869

Δν' 374 (1), 448 (1), 530 (4), 598 (1), (661) (1), 775 (3), (833) (1), 866 (3), (925) (3 b.), (1037) (2), (1068) (3), 1278 (7), 1448 (5 b.), 1640 (8), 2875 (2 b.), 2930 (4), 2976 (2 b.), 3009 (3 b.), 3080 (2 b.).

e) $\ddot{a}thylallen$, $H_2C=C=CH$. C_2H_5 (Literaturangabe: M. Bours, Compt. rend. 182, 1925, S. 788; Ann. chim. (10), 9, 1928, S. 402). Vinyläthylkarbinol gibt beim Behandeln mit Phosphortribromid Brom-1-penten (2), das durch Addition von Brom in 1, 2, 3-Tribrompentan umgewandelt wird. Durch Destillation mit Kaliumhydroxyd erhält man 2, 3-Dibrompenten, welches bei der Destillation mit Zinkstaub und 80%igem Alkohol Äthylallen liefert. $Kp.760=38\cdot5-40\cdot5^{\circ}$ (Literaturangabe: $Kp.760=44^{\circ}$). Ramanaufnahme mit

und ohne Filter bei 14 bzw. 8 Stunden Exp.-Zeit. Untergrund schwach, Streuspektrum stark. Das Auftreten der Linie 1640 zeigt eine Verunreinigung durch ein Äthylderivat an.

 $\label{eq:Tabelle e.} \begin{tabular}{ll} Tabelle e. \\ \begin{tabular}{ll} \ddot{A}thylallen $H_2C=C=CH.C_2H_5$. Platte 576, 577. \\ \end{tabular}$

ν′	I	Zuordnung	٧′	I	Zuordnung	ν′	I	Zuordnung
24462	3 b.	q—2926	22377	8*	e561	21651	1*	e1287
24424	4 b.	$g-2964\lceil k,p,o \rceil$	22318	1*	e—620	21603	1 b.	i—2913
24400	6	q-2988	22160	1*	e—778	21568	1]2*	<i>f</i> —1427 ?
24365	4	p-2988 [o]	22096	2 b.*	$e{-842}$	21532	2	i—2984
24302	3	p—3051 [o]	22070	2*	e—868	21497	7 b.*	e—1441
24145	3	k-560	21976	1*	e-962	21347	0*	<i>f</i> —1648
23642	3	k-1063	21950	1 b.*	e - 988	21298	4 b.*	e—1640
23598	1	k-1107	21877	4*	e—1061	20073	2*	${ m Hg}; e-2865$
23581	3 b.	k-1124	21848	f 3	k-2857	20012	5*	e-2926
23458	2	k—1247 $[i]$	21040) 3*	e—1090	19950	7 b.*	e-2988
23260	5 b.	k—1445	21812	6*	e1126	19893	4*	Hg; e -3045
23230	1*	e+292	21783	8 -	k2922	18136	4s.b.*	c—172
22775	4 Bd.*	e -(163 \pm 15)	21744	3	k-2961	18015	5*	Hg; c =293
22648	4*	e-290	21724	10	k-2981	17964	1/2	3.
22433	1/2*	<i>f</i> —562	21701	2 b.*	e—1237	17740	8*	c-568
22404	2*	e-534	21651	4	k-3054	17690	2*	c-618
		_			1			_

f) 1,3-Dimethylallen, $H_3C \cdot HC = C = CH \cdot CH_3$ (Literaturangabe: Ku-KURISCHKIN, Journ. Russ. phys.-chem. Ges. 35, 1904, S. 873). Ausgehend vom Krotonaldehyd über Dichlorkrotonaldehyd, α-Chlorkrotonaldehyd und Butyrchloral (Chem. Centr. (I), 1921, S. 662) stellt man sich Trichloramylalkohol nach Grignard her. Unter Abänderung der Darstellungsvorschrift, Liebigs Ann. 223, 149 (um das Zinkdimethyl zu ersparen), wurden 50 gMethylbromid in 200 cm^3 absol. Äther gelöst und mit 13 g Magnesiumspänen in 100 cm3 Äther zur Reaktion gebracht. Bei - 150 wurden unter stetem Rühren 45 g Butyrchloral, das in 200 cm^3 absol. Äther gelöst war, zugesetzt. Nach eintägigem Stehen wurde unter Kühlung erst mit Wasser und dann mit verdünnter Salzsäure zersetzt, der abgetrennte Äther mit den Extrakten aus der wässerigen Schicht vereinigt, mit frisch geglühtem Natriumsulfat getrocknet und abdestilliert. Der ölige Rückstand liefert nach mehrmaligem Fraktionieren im Vakuum 31 g des bei Kp. $_{14} = 95 - 96^{\circ}$ siedenden Trichloramylalkohols (Literaturangaben: Kp.12 = 93-950, Kp.15 = 98-990). Durch Behandeln dieser Substanz mit Phosphorpentachlorid und Abspalten des Chlors aus dem erhaltenen Tetrachlorpentan mit Zinkstaub und Alkohol erhält man das 1,3-Dimethylallen; Kp. $_{760} \pm 49 \cdot 1 - 51 \cdot 1^{\circ}$ (Literaturangabe: Kp. $_{760} \pm 49 - 51^{\circ}$). Ramanaufnahme: mit und ohne Filter bei 13 bzw. 6 Stunden Exp.-Zeit. Untergrund mittel, Streuspektrum mittel bzw. schwach.

Tabelle f. 1, 3-Dimethylallen $H_3C.HC = C = CH.CH_3$. Platte 643, 644.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ν'	I	Zuordnung	ν'	I	Zuordnung	ν'	I	Zuordnung
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	24403 24367 24103 23634 23566 23232 23213 23086 22792	$\begin{array}{c} 2 \text{ b.} \\ {}^{1/2} \\ {}^{1/2} \\ 2 \\ 2 \\ 2 \\ {}^{1/2} \\ {}^{1/2} \\ {}^{1/2} \\ {}^{1/2} \\ 5 \text{ b.*} \end{array}$	q—2985 p—2986 ? k—1071 k—1139 k—1473 e+294 ? e+148 e—146	22642 22453 22420 22122 21986 21912 21870 21850 21797	5* 0 5* 4 b.* 1 1* 5* 1 {8 b. 5*	? $e-518$ $e-816$ $k-2719$ $e-1026$ $e-1068$ $k-2855$ $k-2908$ $e-1141$	21537 21477 20071 20020 19949 18097 18022	$ \begin{cases} 2 \\ 1/2* \\ 3* \\ 2* \\ 4* \\ 4 \text{ b.*} \end{cases} $	e—1352 i—2979 f—1458 e—1461 Hg; e—2867 e—2918 e—2989 c—211 Hg; c—286 c—522

Δν' 147 (5 b.), 212 (4 b.), 295 (5), 520 (4), (816) (4 b.), (1026) (1), 1070 (5), 1140 (6), (1352) (1/2), 1464 (3), (2719) (1), 2861 (1), 2913 (8 b.), 2984 (6 b.).

g) Methylisozyanat, $H_3C.N = C = O$. Die Darstellung erfolgte nach der genauen Vorschrift von K. H. Slota-L. Lorenz (Ber. D. ch. G. 58, 1925, S. 1322). Das erhaltene Methylisozyanat zeigte nach dem Trocknen mit Chlorkalzium den Kp.760 = 39·1—40·1° [Literaturangaben ohne Barometerstand: Slota, Kp. =37·4—37·8; Schroeter (Ber. D. ch. G. 44, 1911, S. 3357), Kp. = 42—43°; Lemoult (Compt. rend. 126, 1898, S. 43), Kp. = 40°]. Ramanaufnahme: mit und ohne Filter bei 12 bzw. 6½ Stunden Exp.-Zeit. Die Platten zeigten schwaches Streuspektrum auf mittlerem, bzw. mittleres Spektrum auf starkem Untergrund.

Tabelle g. Methylisozyanat $H_3C.NCO$. Platte 490, 491.

ν′	I	Zuordnung	ν′	I	Zuordnung	v'	I	Zuordnung
24432 24403 23858 23292 23248	3 1 3 2 b.	q—2956 p—2950 [q ?] k—847 k—1413 k—1457	22585 22141 22084 21761 21711	1 b.* 1* 6* 5	e—353 f—854 e—854 k—2945 k—2994?	21533 21489 19986 17454	5 3 b. 2 2	e—1405 e—1449 e—2952 c—854

Δν' (353) (1 b.), 852 (6), 1409 (5), 1453 (3 b.), 2951 (5), (2994) (0 ?).

h) Äthylisozyanat, H_5C_2 . $N \equiv C \equiv 0$. Die Darstellung erfolgte analog der des Methylisozyanats. Der erhaltene Ester hatte den $Kp._{760} \equiv 59-60^{\circ}$ [Literaturangabe: Anschütz (Liebigs Ann. 359, S. 210), $Kp._{760} \equiv 60^{\circ}$]. Ramanaufnahmen: mit und ohne Filter bei 12 bzw. 9 Stunden Exp.-Zeit. Im ersteren Falle schwaches Streuspektrum auf schwachem, im letzteren Falle starkes Spektrum auf starkem Untergrund.

Tabelle h. Äthylisozyanat $H_{\delta}C_{2}$. NCO. Platte 470, 471.

у′	I	Zuordnung	ν′	I	Zuordnung	ν′	I	Zuordnung
24454 24412 24307 24108 24027 23916 23714 23614 23431 23355	4 5 b. 1 1 0 4 2 3 1/ ₂ b. 1	$\begin{array}{c} q-2934 \\ q-2976 \ [p] \\ k-398 \ \ [o] \\ k-597 \\ ? \\ k-789 \\ k-991 \\ k-1091 \\ k-1274 \\ k-1350 \end{array}$	23246 22542 22431 22352 22199 22150 21955 21859 21828 21773	1 1* 0* 1* 1/ ₂ * 4* 2* 3* 2 s.b.	k—1459 e—396 ? e—586 f—796 e—788 e—983 e—1079 k—2877 k—2932	21656 21597 21588 21550 21506 21485 20061 20000 19958 17517	2* 2* 1/2 0* 5* 1* 3 2 3	e—1282 e—1341 i—2928 f—1445 e—1453 Hg; e—2877 e—2938 e—2980 c—791
23270	4	k—1435	21727	3	k—2978			

Δν' 397 (1), 592 (1), 791 (4), 987 (2), 1085 (3), 1278 (2), 1346 (2), 1434 (5), 1456 (3), (2877) (2 b.), 2933 (4), 2981 (3).

Tabelle i. Isopropylisozyanat $(H_3C)_2$. CH. NCO. Platte 466, 467.

ν'	I	Zuordnung	ν'	1	Zuordnung	y ′	I	Zuordnung
24463 24408 24369 24302 24065 23950 23758 23603 23570 23376 23283	2 b. 4 2 1 0 2 1/ ₂ b. 1/ ₂ 1 1 3 4	q—2925 q—2980 p—2984 [o] o—2991 ? k—755 k—902 k—947 k—1102 k—1135 k—1329 k—1422	23247 22592 22480 22348 22238 22189 22039 21992 21843 21835 21808 21781	2 b. 1/ ₄ * 1/ ₂ * 1/ ₂ b.* 1/ ₂ * 5* 2* 1* 2* 4 1* 6 b.	e-458	21773 ;21724 21663 21611 21605 21518 21485 20065 20009 19953 17693 17555	1* 5 b. 0* 4* 3 b. 4 b.* 4 b. 1* 3 b.* 3* 1/2* 1*	$\begin{array}{c} e-1165 \\ k-2981 \\ f-1332 \\ e-1327 \\ i-2911 \\ e-1420 \\ [i] \\ e-1453 \\ \text{Hg}; e-2873 \\ e-2929 \\ e-2985 \\ ? \\ c-753 \\ \end{array}$

Δν' (346) (¹/₄), (458) (¹/₂), (590) (¹/₂ b.), 753 (5), 900 (2), 946 (1), 1098 (2), 1132 (1), 1165 (1), 1330 (4), 1421 (4 b.), 1455 (4 b.), (2872) (4), 2922 (6 b.), 2984 (5 b.).

i) Isopropylisozyanat, $(H_3C)_2HC.N \equiv C \equiv 0$ (Literaturangabe: A. W. Hofmann, Ber. D. ch. G. 15, 1882, S. 756; der Ester ist nur sehr wenig beschrieben). Die Darstellung erfolgte aus dem Isobuttersäuremethylester. Über das Isobuttersäureamid und das Isobuttersäureamidbromid. Zur Entfärbung des trotz mehrmaliger Destillation braun gefärbten Esters wurde er mit einer gesättigten wässerigen Lösung von Natriumsulfit geschüttelt und mit Chlorkalzium getrocknet. Kp.760 $\equiv 68-69^{\circ}$ (Literaturangabe: Kp. $\equiv 67^{\circ}$). Ramanaufnahmen: mit und ohne Filter bei 11 bzw. 8 Stunden Exp.Zeit. Spektrum und Untergrund waren auf den Platten mittel bzw. stark.

Diese Untersuchung wurde mit Mitteln ausgeführt, die die Akademie der Wissenschaften in Wien dem Physikalischen Institut der Technischen Hochschule Graz zur Verfügung gestellt hat. Für die Überlassung dieser Mittel sowie für die Unterstützung bei dem theoretischen Teil der Diskussion haben wir Herrn Prof. Dr. K. W. F. Kohlrausch den Dank auszusprechen.